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Abstract
We study a simple mathematical model that can be interpreted as a description
of the kinetics of the following four reactions involving the two chemicals
U and W : (i) U + U �⇒ U with rate α, (ii) U + W �⇒ U with rate β,

(iii) W + W �⇒ U with rate γ and (iv) W + W �⇒ W + W + W with rate
δ + 2γ . The model can be generally solved by quadratures, and in the special
case β = 2α, explicitly in terms of elementary functions.We focus on the
case characterized by the two inequalities γβ2 > αδ2 and 2βγ > δ2, and we
show that in this case the solutions vanish asymptotically at large times. But
if a constant decay with rate θ of chemical U is added, then a nonvanishing
equilibrium configuration arises. Moreover, for arbitrary strictly positive initial
conditions, the solutions remain bounded. They either tend asymptotically
(in the remote future) to this nonvanishing equilibrium configuration, or are
periodic, or tend to a limit cycle. Indeed, we find that this system goes
through a standard supercritical Hopf bifurcation at an appropriate value of the
parameters. Another interesting case arises when, in addition to the original
reaction, a negative constant term is added to the equation corresponding to
chemical U, corresponding to siphoning out a constant amount of chemical U
per unit time, independent of its concentration. A very remarkable feature of
this (possibly not very realistic) model is the following: in the special case
β = 2α, we again find an explicit solution in terms of elementary functions,
which oscillates at a fixed frequency, independent of the initial condition. In
other words, it is an isochronous system. If β �= 2α, however, no periodic
orbits exist, implying that the nature of the bifurcation at β = 2α is rather
peculiar.
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1. Introduction and main results

Recently, we have investigated systems of evolutionary nonlinear ordinary differential
equations (ODEs) amenable to neat mathematical treatment (including, in some cases,
an explicit solution of the initial-value problem) and yielding time evolutions exhibiting
oscillatory phenomena, possibly including periodicity and even isochrony; see [1] and other
papers referred to there, and, for a review of previous work, the monograph [2]. In this
paper, we begin to explore possible applications of these mathematical findings. The first
context selected is that of chemical reactions, which lend themselves rather naturally to
a mathematical representation in terms of (systems of) nonlinear first-order ODEs. The
possibility that chemical reactions give rise to oscillatory behavior is of course well known,
the classical example being the chemical reaction associated with the names of Belousov [3]
and Zhabotinskii [4] (although the name of Bray should also be associated with this reaction
[5]). Other oscillatory chemical reactions have also been investigated, for instance, the Briggs–
Rauscher reaction [6], the ‘Brussellator’ [7], the ‘Oregonator’ [8]: indeed the literature on
such reactions—both their chemistry and their mathematical modeling—is vast; for reviews
and references see, for instance, the standard books [9–11]. In this paper, we report some
findings the interest of which is, still, mainly mathematical, although we hope that they will
also be appreciated by chemists and shall eventually lead to experimental verifications and
possibly even to industrial applications.

Our main results are reported in this section; the corresponding proofs are provided in the
following section. Some additional considerations are given in section 3, entitled ‘Outlook’.

But before dealing with chemical reactions let us tersely recall—also to establish
notation—the classical Lotka–Volterra model of chemical reactions and population dynamics
[12, 13], as the archetype of a nonlinear evolutionary system of two ODEs amenable to neat
mathematical treatment and displaying certain ‘paradoxical’ features somewhat analogous to
those of the systems described herein. This model is characterized by the following simple
system of two coupled ODEs:

ẋ = ax − bxy = (a − by)x, ẏ = −cy + dxy = (−c + dx)y. (1a)

Notation: the superimposed dot indicates differentiation with respect to the independent
variable (time t), the two dependent variables x ≡ x(t) and y ≡ y(t) indicate respectively
(in the Volterra model of interacting populations) the numbers of preys and predators (and are
therefore positive numbers), and the four constants a, b, c and d are as well positive. Indeed,
hereafter all the quantities appearing in our equations are assumed to be positive numbers, and
if any of the dependent variables become negative over time, or diverge, this occurrence shall
be interpreted as a breakdown of the validity of the model under consideration. In this Volterra
case, the very structure of these ODEs clearly shows that if the initial data x(0) and y(0)

are positive, the dependent variables x(t) and y(t) remain positive for all time. Clearly this
model admits—besides the uninteresting, unstable equilibrium solution x(t) = y(t) = 0—the
equilibrium configuration

x(t) = x̄ = c

d
, y(t) = ȳ = a

b
, (1b)

and it can moreover be easily shown that all the other solutions of this model rotate periodically
around this center, (1b). This is due to the existence of a conserved quantity—obtained by
integrating the relation (d − c/x) dx = −(b − a/y) dy implied by (1a). It is evident from
the equilibrium formula (1b) that the addition to this model of any intervention resulting in an
increase of the constant c (the natural rate of decrease of the predators in the absence of preys),
even if associated with a simultaneous decrease of the constant a (the natural rate of increase
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of the preys in the absence of predators)—for instance by any kind of indiscriminate fishing
or hunting (if the populations under consideration are fishes or huntable games)—results
in a decrease in the equilibrium number of predators but—somewhat paradoxically—in an
increase in the equilibrium number of preys.

In the following, we describe equations which could, in principle, describe the kinetics of
some very simple and idealized reactions. We do not claim that these can be realized, but the
mathematical behavior of the resulting equations is of sufficient interest to warrant the study.

Consider the following four chemical reactions, which we assume to be taking place
simultaneously in a reactor guaranteeing at all time that the two chemicals U and W are
uniformly mixed:

U + U �⇒ U with rate α,

U + W �⇒ U with rate β,

W + W �⇒ U with rate γ,

W + W �⇒ W + W + W with rate δ + 2γ.

Here and hereafter α, β, γ and δ are four positive constants. Hereafter, we indicate by
u ≡ u(t) and w ≡ w(t) the amounts (say, the numbers of molecules) of chemicals U and
W respectively contained in the reactor at time t. Hence, we model the chemical kinetics
regarding the two chemicals U and W via the following system of two nonlinear ODEs:

u̇ = −αu2 + γw2, ẇ = −βuw + δw2 = (−βu + δw)w. (2)

Note that this system guarantees that, if u(0) > 0 and w(0) > 0, then u(t) > 0 and w(t) > 0
for all (subsequent) time: indeed (2) entails that u̇ > 0 when u = 0 and ẇ = 0 when
w = 0—and we show below that no blow-up can occur from the first quadrant of the u − w

(phase-space) Cartesian plane.
Clearly this model, (2), admits (aside from the equilibrium solution u(t) = w(t) = 0) no

equilibrium configuration, unless the four reaction rates satisfy the equality αδ2 = γβ2. We
mainly focus hereafter on the case characterized by the following three inequalities:

γβ2 > αδ2, (3a)

2βγ > δ2, (3b)

2β � α, (3c)

and we accordingly introduce the positive quantity η setting

η2 = γβ2 − αδ2

α
. (4)

Note that a large part of what follows holds without requiring the inequality (3c). However,
as we shall see, the inequality (3c) is a necessary condition for oscillatory reactions to occur
in the systems to be discussed later.

This model then has the remarkable feature that, in the special case β = 2α, it can actually
be solved analytically in terms of elementary functions, as shown in the following proposition.

Proposition 1. If the equality

β = 2α, (5a)

holds—in which case the two inequalities (3a) and (3b) coincide, both reading

η2 = 4αγ − δ2 > 0, (5b)
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—the solution of the initial-value problem of the model (2) can be exhibited explicitly:

u(t) = C

α

[
δ

η
+ C(t − t0)

]
[1 + C2(t − t0)

2]−1, (6a)

w(t) = 2C

η
[1 + C2(t − t0)

2]−1, (6b)

C = ηw(0)

2

{
1 +

1

η2

[
δ − 2α

u(0)

w(0)

]2
}

, (6c)

Ct0 = 1

η

[
δ − 2α

u(0)

w(0)

]
. (6d)

The two constants C and t0 in the first two of these four formulae are arbitrary, yielding thereby
the general solution of the model (2); the last two formulae provide their values yielding the
solution of the initial-value problem. The way to arrive at this result will be sketched in the
following section, but it can, of course, be verified through a straightforward computation.
Note that all these solutions are nonsingular and vanish asymptotically (as t → +∞); they
moreover imply that u(t) and w(t) remain positive for all (positive) time (assuming of course
that the initial data u(0) and w(0) are positive). These qualitative features are in fact more
general, as shown by the following result.

Proposition 2. For arbitrary positive initial data, u(0) > 0, w(0) > 0, the dependent
variables u(t) and w(t) of model (2) with (3) remain positive and finite for all (positive) time
(i.e., no blow-up) and both vanish asymptotically,

u(∞) = 0, w(∞) = 0. (6e)

The proof is given in the following section; it is a straightforward consequence of the solution by
quadratures of system (2) which will be shown in the following section. The chemical reactions
described above thus lead to the eventual (asymptotic) disappearance of both chemicals, U

and W . Let us now discuss two variants of this model.
First, we suppose that there occurs additionally a constant decay of chemical U—say,

caused by a fifth chemical reaction, U �⇒ Z with rate θ , with the inert chemical Z giving
no further reaction—or, equivalently, caused by an outflow of chemical U from the reactor,
proportional to the quantity of this chemical contained in it. The modeling of the process is
now provided by the system

u̇ = −θu − αu2 + γw2, ẇ = −βuw + δw2 = (−βu + δw)w, (7)

which differs from (2) due to the appearance—on the right-hand side of the first of these two
ODEs—of the additional term −θu, representing the decay of chemical U. Here of course θ

is a positive constant, θ > 0.
In this case, we have no analytic solutions, but again a qualitative description of the

behavior of the system. This is provided by the following proposition.

Proposition 3. The system of two nonlinear ODEs (7) features (in addition to the trivial
equilibrium configuration u = w = 0) a second equilibrium configuration,

u(t) = ū = θδ2

αη2
, w(t) = w̄ = θβδ

αη2
, (8)

which is clearly inside the first quadrant of the u−w (phase-space) Cartesian plane provided
the inequalities (3) (the first of which justifies the definition (4) of η) continue to hold. And—
from any initial configuration (of course with u(0) > 0, w(0) > 0)—the solution of this system,
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(7), always remains inside the first quadrant of the Cartesian u − w plane. The equilibrium
defined by (8) is stable if and only if the quantity

ρ = γβ2 + (α − β)δ2 = αη2 + (2α − β)δ2 (9)

is positive, ρ > 0. If instead ρ is negative, ρ < 0, the equilibrium configuration (8) is
unstable. Then the system rotates (clockwise) around this equilibrium point. The motion
remains bounded for all times, so that the orbit is either periodic, approaches a limit cycle
or approaches the equilibrium point. The latter is, of course, only possible if the equilibrium
point is stable, that is, if ρ > 0. We moreover show that the bifurcation at ρ = 0 is a
supercritical Hopf bifurcation, so that in a neighborhood of ρ = 0 there is a stable limit
cycle in a neighborhood of the equilibrium point when ρ < 0, corresponding to an unstable
equilibrium point. This limit cycle does not exist when ρ > 0.

Again, this is proved by linearizing (7) around its non-trivial equilibrium and combining
this with the result of standard phase-space analysis. The result concerning the supercritical
Hopf bifurcation is obtained by showing that the system at ρ = 0 has a weakly attracting
focus. Note at this stage that inequality (3c) is necessary in order for the condition ρ � 0,
hence oscillatory behavior, to be possible.

Another interesting variant of the original model (2) obtains if a negative constant −f

is added to the equation describing the behavior of U; see (2). This describes a situation
in which a constant flow of chemical U is siphoned out of the reactor tank, independently
of the concentration of U present. This can presumably be realized in a suitable range of
parameters via an appropriate control mechanism, letting the chemical U out at a controllable
rate r(t) inversely proportional to its concentration. Since the resulting equations do not, as we
shall see, guarantee that positive initial conditions remain positive, a chemical implementation
will clearly not always be possible. Again, a non-trivial equilibrium is created, so that the
chemicals do not disappear asymptotically.

We thus now consider the system

u̇ = −f − αu2 + γw2, ẇ = −βuw + δw2 = (−βu + δw)w, (10)

which differs from (2) due to the additional term −f on the right-hand side of the first of
these two ODEs. Here f is a positive constant, f > 0. Note that, while the second of these
two ODEs guarantees that if w(0) > 0, then w(t) > 0 for all later times, now the first ODE
does not guarantee automatically that if u(0) > 0, then u(t) > 0 for all later times. We
discuss below under which circumstances u(t) changes sign during the evolution, signaling a
breakdown of the interpretation of the system (10) in terms of chemical reactions. Again, a
remarkable, exactly solvable, special case exists, as described in the following proposition.

Proposition 4. If β = 2α (see (5a)), the solution of the initial-value problem of this model
(10) can be exhibited explicitly:

u(t) =
√

f

α

(1 − A2)δ − 2Aη sin(ωt + ϕ)

η
[
1 + A2 + 2A cos(ωt + ϕ)

] , (11a)

w(t) =
√

f

α

2α(1 − A2)

η
[
1 + A2 + 2A cos(ωt + ϕ)

] , (11b)

where the different constants are defined as follows:

ω = 2
√

f α, (11c)
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A =
√

v2 + v2−
v2 + v2

+

, (11d)

ϕ = −arcsin

⎧⎨
⎩ 2ωv√

v4 + 2v2V+ + V 2−

⎫⎬
⎭ , (11e)

v = 2αu(0) − δw(0) = 2α
w̄u(0) − ūw(0)

w̄
, (11f )

v± = ηw(0) ± ω = η [w(0) ± w̄] , (11g)

V± = η2[w(0)]2 ± ω2 = η2{[w(0)]2 ± w̄2}. (11h)

Here η > 0 is of course defined by (5b) and the equilibrium values ū, w̄ by (14) with (5b): note
that this implies w̄ = ω/η. Clearly, for arbitrary initial data u(0) > 0, w(0) > 0, this solution
is nonsingular and isochronous, traveling clockwise around the equilibrium configuration (14)
with period T = π/

√
f α (independent of the initial data, and remarkably also of the two

rates γ and δ). The trajectory of the system in the u − w (phase-space) Cartesian plane is the
ellipse defined by the equation

4α2(w̄u − ūw)2 + ω2[w − w̄ − A2(w + w̄)]2 =
(

ω2A

η

)2

, (12)

which shrinks to the equilibrium point if the initial data coincide with the equilibrium
configuration, see (14) with (5a), since then A vanishes (see (11e) and (11g)). This trajectory
remains inside the first quadrant of the u − w (phase-space) Cartesian plane provided the
initial data u(0) > 0, w(0) > 0 are inside the ellipse (enclosing of course the equilibrium
point (14)) defined by the equation

4αu(αu − δw) + (2
√

αγw − ω)2 = 0. (13)

Once more, we can also describe in qualitative terms the more general system in which
the condition β = 2α does not hold.

Proposition 5. The system of two nonlinear ODEs (10) features, in the first quadrant of the
u − w (phase-space) Cartesian plane, the single equilibrium configuration

u(t) = ū = δ

η

√
f

α
, w(t) = w̄ = β

η

√
f

α
, (14)

with η > 0 defined of course by (4) (recall that we always assume validity of the inequality
(3a)). This configuration is stable if β < 2α, and is unstable if β > 2α. Again, one can
show that the motion remains bounded, at least as long as it remains within the positive
quadrant. If β < 2α, provided that the initial data are sufficiently close to the (stable)
equilibrium configuration (14), the trajectory of the dependent variables u(t), w(t) approaches
it asymptotically—exponentially in time, and spiraling or not depending on whether 8β3γ is
larger or smaller than (2α + β)2δ2. Moreover, if β �= 2α there is no periodic orbit inside the
positive quadrant. Thus, if β < 2α, any initial conditions that do not approach equilibrium
must eventually leave the positive quadrant and thus lose their chemical significance. If instead
β > 2α, the trajectories tend to move away from the (unstable) equilibrium configuration (14).
In this case, the absence of periodic orbits entails that u(t) becomes negative at some finite
time, so that the system again loses its chemical significance.
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Again, the results of proposition 5 are obtained through a straightforward phase-space
analysis combined with linearization around the non-trivial equilibrium point. At this point,
it should be pointed out that our results do not favor an interpretation of (10) as a chemical
oscillator: indeed, we find that the solutions of (10) for β �= 2α, that is, in the generic case,
either tend to an equilibrium or eventually leave the positive quadrant. However, we believe
the possibility of obtaining isochronous solutions for these equations is nevertheless of interest
in itself.

The last two propositions provide a description of the system’s behaviour as a function of
its parameters, which can be summarized as follows. The model (7) undergoes a supercritical
Hopf bifurcation as the equilibrium becomes unstable, thereby giving rise to a stable limit
cycle in the vicinity of the unstable equilibrium point. On the other hand, the model (10) loses
its chemical interpretation by yielding anomalous behavior immediately above the appearance
of oscillations, namely as soon as β exceeds 2α. This behavior consists of the appearance
of negative values of u(t) at finite times. Qualitatively, this can be understood as follows:
as implied by proposition 4, at the very point at which the equilibrium becomes marginally
stable, the system displays a highly nongeneric and quite remarkable behavior: it has a center
at the equilibrium, instead of a weakly attracting focus, and moreover the oscillation has a
period which is independent of its amplitude. This suggests that any perturbation of this
system gets amplified indefinitely through resonance, entailing instability and leading to the
behavior described in the last part of proposition 5. In this sense, the system behaves almost
as if it were a linear system.

2. Proofs

To prove proposition 1, we first show how the system (2) can be solved by quadratures. First
define φ = u/w. One then has

1

w

d

dt
φ = (β − α)φ2 − δφ + γ. (15)

If we now introduce

dτ = w(t) dt, (16)

then it clearly follows that φ(τ) can be evaluated by a quadrature. The system (2) is now
rewritten as

du

dτ
= (−αφ2 + γ )w = (−αφ + γφ−1)u, (17a)

dw

dτ
= (−βφ + δ)w, (17b)

entailing that both u(τ) and w(τ) can be evaluated by quadratures. Finally, the relation
between t and τ can also be obtained via the quadrature

t =
∫ τ

τ0

dτ ′

w(τ ′)
. (18)

In the general case, these formulae cannot be made more explicit. In the special case β = 2α,
however, one finds

w
dφ

dw
= αφ2 − δφ + γ

−2αφ + δ
, (19)
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which is readily solved to yield

αu2 − δuw + γw2 = Cw, (20)

where C is an integration constant. From this via (2) one gets

α

(
ẇ

2αw

)2

= Cw −
(

γ − δ2

4α

)
w2. (21)

And finally, the substitution z = 1/w leads to the following readily solved equation:

ż = [4Cαz − (4αγ − δ2)]1/2 (22)

from which the results stated in proposition 1 follow through routine computations.
To prove proposition 2, we make use of (15): using inequalities (3a), (3b) and (3c), we

see that the right-hand side of (15) has no real zeros. This entails that φ(τ) and hence also φ(t)

is a monotonically increasing function. It therefore tends to a limit, either finite or infinite, as
t → ∞. In either case, the limiting value of τ(t) as t → ∞ is finite. Let us then consider the
two possible limiting behaviors of φ(t) as t → ∞: if it remains finite, then, as follows from
(17b), the limiting value of w(t) is nonzero, which contradicts the finiteness of the limiting
value of τ(t). Hence the limit of φ(τ) must be infinite. But this immediately leads to the
conclusion, via (17a) and (17b), that u(t) and w(t) tend to zero as t → ∞. The entire motion
is hence bounded, which is what was to be shown.

To prove proposition 3, one notes first that the system (7) possesses two equilibrium
configurations, the trivial one at u = w = 0, and a second one inside the first quadrant of the
u−w Cartesian plane; see (8). By linearizing the equations of motion (7) in the neighborhood
of this second equilibrium point—via the assumption u(t) = ū + εu1(t), w(t) = w̄ + εw1(t)

with ε infinitesimal—one gets

u̇1 = −θu1 − 2αūu1 + 2γ w̄w1, ẇ1 = −β(ūw1 + w̄u1) + 2δw̄w1, (23a)

the general solution of which is, for each of the two dependent variables ũ(t) and w̃(t), a
linear combination of two exponentials, exp(−λ±t), with

λ± = θρ

2αη2

⎛
⎝1 ±

√
1 − 4

αβδ2η2

ρ2

⎞
⎠ , (23b)

with η and ρ defined of course by (4) and (9). Clearly the real parts of both λ+ and λ− have
the same sign as ρ, and this confirms the statements of proposition 3 concerning the relation
of the sign of ρ to the character (stable or unstable) of the equilibrium point (8). The behavior
of the system near the equilibrium point (8) in the special case characterized by the vanishing
of ρ, yielding for λ± the imaginary values λ± = ±i(δθ/η)

√
β/α, requires a more detailed

treatment. Let us now show that the Hopf bifurcation which this system undergoes as ρ goes
through zero is in fact a supercritical Hopf bifurcation, that is, that a stable limit cycle arises
in the neighborhood of the equilibrium point when it becomes unstable. This follows, as is
well known, from the fact that the equilibrium is weakly stable when ρ = 0. The proof of this
fact involves rather tedious calculations which are relegated to appendix A.

To complete the proof of the main part of proposition 3, it is then enough to show that the
trivial equilibrium point u = w = 0 cannot be reached from inside the first quadrant of the
u−w plane, as well as the fact that the orbits always remain bounded. To prove the first point,
note that the asymptotic approach of the trajectories of the system (7) to the trivial equilibrium
point u = w = 0 can only happen from the sector defined by

u >
βw

δ
, (24)

8
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Figure 1. Phase-space portrait of equation (7). In sector 1, both u̇ > 0 and ẇ > 0, in sector 2,
u̇ > 0 and ẇ < 0, in sector 3, u̇ < 0 and ẇ < 0 and in sector 4, u̇ > 0 and ẇ < 0. The continuous
line is the locus of points for which ẇ = 0 and the dotted line is the locus of points for which
u̇ = 0. The arrows indicate the way in which these lines must be traversed by the solutions of (7).

since only there are both derivatives u̇ and ẇ negative. However, the first of the two equations
(7) can obviously be rewritten in the following integral form:

u(t) =
∫ t

0
dt ′ e−θ(t−t ′)[−αu(t ′)2 + βw(t ′)2]

� β

∫ t

0
dt ′w(t ′)2 exp[θ(t ′ − t)], (25)

which is clearly incompatible with (24) as u and w go to zero.
Note however that the trivial equilibrium point u = w = 0 can be reached if the trajectory

starts, rather than inside the first quadrant of the u − w Cartesian plane, on its lower border,
as entailed by the following solution of (7):

w(t) = w(0) = 0, (26a)

u(t) = u(0)

1 + u(0)(α/θ)[exp(θt) − 1]
. (26b)

The proof of proposition 3 is thereby essentially completed except for the last qualitative
statement and the boundedness of the orbits. To ascertain the former, one performs a phase-
space analysis. One partitions the first quadrant of the u − w Cartesian plane into four
sectors separated by the straight line w = (β/δ)u (at which ẇ vanishes, and by the hyperbola
w =

√
(αu2 + θu)/γ (at which u̇ vanishes) which starts at the origin of the u − w Cartesian

plane (with an infinite derivative) and becomes eventually asymptotic (from above) to the
straight line w = √

α/γ [u + θ/(2α)]; these two curves cross of course at the equilibrium
point (8). These four sectors are characterized by the four possible pairs of signs of the two
quantities u̇ and ẇ; see figure 1 for details. It is thereby easily seen that from sector 1 the
trajectory can either escape to infinity (but this will be shown to be impossible) or go to
sector 2. From sector 2, it can only proceed to sector 3, from sector 3 it can either go to the
equilibrium point (8) (but this is of course not possible in the unstable case, when ρ < 0)

9



J. Phys. A: Math. Theor. 42 (2009) 265208 F Calogero and F Leyvraz

or go to the trivial equilibrium point u = w = 0 (also excluded, see above) or proceed to
sector 4. From sector 4, once more, it can only go to sector 1. The qualitative description
of the behavior of all the solutions of the system (7) starting inside the first quadrant of the
Cartesian u − w plane—as formulated in proposition 3—is thereby completed.

We are now only lacking two points: we must show that the solution cannot blow up to
infinity when it finds itself in sector 1, and we must show the entire motion to be bounded. The
former follows from the similar result for (2), since both systems are very close in this part of
phase space. The second result is shown, once more, by introducing the variable φ = u/w,
which satisfies the equation

1

w

d

dt
φ = (β − α)φ2 − (δ + θw−2)φ + γ. (27)

Let us now consider an arbitrary initial condition. From the above analysis, we see that the
orbit must eventually reach sector 4, from which it will come back to sector 1. Since the values
of w in sector 4 are bounded by w̄ (see (8)), if w is to reach large values, it must necessarily
pass through the value 2wc, where wc is the value of w for which the right-hand side of (27)
has no real zeros for w > wc. Let this happen at time t0. From then on, the following estimate
holds, where we now once more introduce the variable τ defined by (16)

τ − τ0 =
∫ t

t0

w(t ′) dt ′ =
∫ φ(t)

φ(t0)

dφ
1

(β − α)φ2 − [δ + θw(t ′)−2]φ + γ
. (28)

But, as long as w(t ′) is larger than, say, 2wc, the right-hand side of (28) is uniformly bounded
by a constant, independently of the values of φ(t0) or φ. Since in this case one has, see (17b),

dw

dτ
= w(δ − βφ), (29)

and since φ varies from φ(0) to δ/β and from δ/β to infinity in a uniformly bounded range
of the variable τ , it is clear that w(t) remains bounded throughout this part of the orbit. From
this the entire proposition 3 follows.

Next, let us prove proposition 4. Its first part is shown as follows: note first that the
conservation law of (2) stated in (20) also follows from the fact that (2) can be written as
follows when β = 2α:

w−2u̇ = ∂

∂w

(
αu2 − δuw + γw2

w

)
, (30a)

w−2ẇ = − ∂

∂u

(
αu2 − δuw + γw2

w

)
. (30b)

This is, of course, a Hamiltonian system, up to a rescaling of the time variable. Similarly,
when β = 2α, (10) can be written as

w−2u̇ = ∂

∂w

(
αu2 − δuw + γw2 + f

w

)
, (31a)

w−2ẇ = − ∂

∂u

(
αu2 − δuw + γw2 + f

w

)
. (31b)

From this, the following conservation law follows:

αu2 − δuw + γw2 + f

w
= C, (32)

10
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where C is an integration constant. We proceed as we did for (2) and obtain

α

(
ẇ

2αw

)2

= Cw − f −
(

γ − δ2

4α

)
w2. (33)

Once more, we define z = 1/w and obtain

ż = [4αCz − 4αf z2 − (4αγ − δ2)]1/2, (34)

which is once more readily solved and yields the result stated in proposition 4. Let us also
note, for completeness, that in the (excluded) case w(0) = 0 one gets rather trivially the
(unchemical) solution

w(t) = 0, (35a)

u(t) = −
√

f

α
tan

[
ω(t − t0)

2

]
, (35b)

t0 = 2

ω
arctan

[√
f

α
u(0)

]
, (35c)

which becomes negative at time t0 and then blows up (or rather down) at time t0 + π/ω.
To complete the proof of proposition 4, one must justify the last statements, concerning

the ellipses (12) and (13). The first one, describing the trajectory, obtains by computing
sin(ωt + ϕ) from the ratio of (11a) and (11b) and cos(ωt + ϕ) from (11b) and then using the
identity sin2 z + cos2 z = 1. As for the second, it is a consequence of the following three
inequalities (whose equivalence is easily seen to be implied by (11e), (11g) and (11h)):

4A2η2 < (1 − A2)2δ2, (36a)

v4 + 4η2w̄w(0)v2 + η4V 2
− < [2ωδw(0)]2 , (36b)

4αu(0)[αu(0) − δw(0)] + [2
√

αγw(0) − ω]2 < 0. (36c)

Indeed the first, (36a), is clearly necessary and sufficient—see (11a)—for the positivity of
u(t); while the last, (36c), clearly entails the last statement of proposition 4, which is thereby
proven. Also note that the second of these inequalities, (36b), is clearly satisfied by the
equilibrium configuration (and by initial data sufficiently close to it), since both v and V−
vanish if the initial data coincide with the equilibrium data (see (11g) and (11h)). The diligent
reader may wish to complete the diagram in the u−w (phase-space) Cartesian plane described
above, by drawing in it the ellipse defined by (13).

To prove proposition 5, one performs first—as in the proof of proposition 3, see above—
a standard analysis of the behavior of the system (10) in the immediate neighborhood of
its equilibrium configuration (14) by setting u(t) = ū + εu1(t), w(t) = w̄ + εw1(t) with ε

infinitesimal, thereby linearizing the equations of motion satisfied by u1(t) and w1(t). Solving
these linear ODEs one concludes again that ũ(t) and w̃(t) are a linear combination of two
exponentials, exp(−μ±t), now with

μ± = 1
2

[
ū(2α − β) ±

√
ū2(2α − β)2 − 8fβ

]
, (37)

where ū is of course defined by (14). These formulae show that the real parts of both μ+ and
μ− have the same sign as 2α − β, confirming the statement about the character— stable or
unstable—of the equilibrium configuration (14). Also note that, via (14) and (4), the inequality

11
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8fβ > ū2(2α − β)2, guaranteeing that μ± have a nonvanishing imaginary part, corresponds
to the inequality 8β3γ > (2α + β)2δ2.

We proceed to perform a phase-space analysis similar to that provided above in the proof
of proposition 3: now the first quadrant of phase-space should be divided into four sectors
separated by the straight line w = (β/δ)u (corresponding to ẇ = 0, see (10)) and by the
hyperbola w =

√
(f + αu2)/γ (corresponding to u̇ = 0, see (10)). We may now refer back to

figure 1, which also qualitatively describes the present situation. It is then easy to see that the
orbits also in this case turn clockwise around the equilibrium point (u,w), see (14), as long as
they stay within that quadrant. On the other hand, as we show below, for β �= 2α there are no
periodic orbits lying in that quadrant, whereas for β = 2α the solution is fully characterized
in proposition 4. From the absence of periodic orbits and the Poincaré–Bendixson theorem,
it follows that any orbit must either leave the first quadrant or tend to that equilibrium point.
The latter possibility, however, only arises if that equilibrium configuration is linearly stable,
which, as shown above, only happens if β < 2α. Finally, we may use the above phase-space
analysis together with an argument entirely similar to that used in the proof of proposition 3
to show that the solutions of (10) remain bounded for all times and cannot blow up to infinity.
We have thus proved all of proposition 5.

Let us finally show that, if β �= 2α, there can be no (nontrivial) periodic orbit lying
entirely inside the positive quadrant. For this purpose, it is convenient to introduce the
function s = w−1, in terms of which the system (10) reads as follows:

u̇ = −f − αu2 + γ s−2, ṡ = βus − δ. (38)

Next, we introduce the Lyapunov function

L = (s̈)2

2
+ βf (ṡ)2. (39)

It can then be shown that the equations of motion (38) entail that, if β �= 2α and u > 0, this
quantity is a strictly monotonic function of time. This is implied by the equation

L̇ = (β − 2α)(s̈)2u, (40)

which is a consequence of the system (38), as shown in appendix B. (Note in passing that the
conservation of L for β = 2α offers yet another way to show proposition 4). Clearly (40)
immediately implies that, if β �= 2α, there cannot be any periodic solution of our system in
the first quadrant of the u − w (phase-space) plane where of course u > 0.

Finally, if the system is considered in the abstract, independently of its possible
interpretation as a chemical process, we may ask how it behaves after becoming negative.
Let us just note that the statements made above concerning the boundedness of the solution of
course fail, since the proof of boundedness rested essentially on positivity.

3. Outlook

In this short paper, we refrained from displaying any numerical solution of the three
mathematical models, (2), (7) and (10), discussed above, focusing rather on their exact
mathematical treatment. If the chemical interpretations we outlined turn out to be a realistic
possibility and chemical engineers wish to implement them, such numerical simulations will
of course become useful—and quite easy to perform.

Let us complete this paper by outlining, in this same spirit (i.e., without recourse to
numerics), a more general variant of the models discussed above and by tersely mentioning
how to manufacture other models of chemical reactions also featuring explicit solutions
displaying isochrony.
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The more general model reads

u̇ = −f − θu − αu2 + γw2, (41a)

ẇ = −κw − βuw + δw2 = (−κ − βu + δw)w. (41b)

This model encompasses all those discussed above, inasmuch as it reduces to (2) for
f = θ = κ = 0, to (7) for f = κ = 0 and to (10) for θ = κ = 0; but we now assume, as
we always did in this paper, that all these quantities are positive. Note that, as in the case of
(10), this model allows u(t) to possibly become negative, signifying a possible breakdown of
its chemical significance. A chemical narrative appropriate to it envisages, in addition to that
described above in connection with the system (10), a decay of both chemicals U and W with
rates θ and κ, either via chemical reactions U �⇒ Z and W �⇒ Y with Z and Y two inert
chemicals (or possibly the same one) not interacting with U and W , or via the addition to the
original model, see (2), of an outflow of each chemical, appropriately modulated according
to the quantity of it present in the reactor (note that, for simplicity, we omitted to include a
term independent of w on the right-hand side of the second ODE (41b)). A standard analysis
shows that in this case there is still a single equilibrium configuration in the first quadrant of
the u − w (phase-space) Cartesian plane,

ū = δw̄ − κ

β
, (42a)

w̄ = δ(2ακ − βθ)

2αη2

⎡
⎣
√

1 +
4αη2[(ακ − βθ)κ + β2f ]

δ2(2ακ − βθ)2
− 1

⎤
⎦ , (42b)

provided that the reaction rates are restricted by the three inequalities

γβ2 − αδ2 > 0, (ακ − βθ)κ + β2f > 0, δ2f > γκ2, (42c)

the first of which coincides with (3a) and justifies the definition (4) of the quantity η, the
second of which is necessary and sufficient to guarantee that w̄ is positive, w̄ > 0, and the
third of which is necessary and sufficient to guarantee that w̄ > κ/δ hence that ū is as well
positive, ū > 0. It is moreover easily seen that this equilibrium configuration is unstable if
either one of the following two (additional) inequalities holds

(β − 2α)δw̄ + 2ακ − βθ > 0 or 2(αδ + β2)w̄ − 2ακ + βθ > 0. (42d)

Note that the first one of these two inequalities holds automatically if β > 2α and
ακ > βθ (also entailing validity of the second inequality (42c)). The qualitative behavior of
this system is then easily seen to be analogous to that of the model (10) (see proposition 4), by
taking advantage, as in the previous cases, of the phase-space picture yielded by the separation
of the first quadrant of the u − w Cartesian plane into four sectors, now via the straight
line w = (βu + κ)/δ (corresponding to ẇ = 0) and the hyperbola w =

√
αu2 + θu + f /γ

(corresponding to u̇ = 0), crossing of course at the equilibrium point (42b).
Other models of chemical reactions amenable to exact treatment and yielding interesting

phenomenologies—such as isochronous evolutions—may be evinced from results reported in
[1]: their treatment will be reported in a subsequent paper.
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Appendix A. Weak stability at criticality

We consider the system (7) at criticality, that is, when ρ = 0. To simplify the formulae, we
normalize the system as follows:

u̇ = −αu2 + γw2 − u, (A.1a)

ẇ = w(w − u), (A.1b)

which can be attained by scaling appropriately u,w and t. The case ρ = 0 then corresponds
to γ = 1 − α, and the inequalities (3) then reduce to α < 1/2. Shifting (A.1) to u1 = u − ū

and w1 = w − w̄, where ū = w̄ = 1/(1 − 2α), one obtains

u̇1 = −αu2
1 + (1 − α)w2

1 − 1

1 − 2α
u1 +

2 − 2α

1 − 2α
w1, (A.2a)

ẇ1 = w1(w1 − u1) +
1

1 − 2α
w1. (A.2b)

One now defines

L(u1, w1) = u2
1

2
− u1w1 + (1 − α)w2

1 − (
c1u

3
1 + c2u

2
1w1 + c3u1w

2
1 + c4w

3
1

)
− (

d1u
4
1 + d2u

3
1w1 + d3u

2
1w

2
1 + d4u1w

3
1 + d5w

4
1

)
(A.3)

with

c1 = 1

3
(1 − 2α) (A.4a)

c2 = −2α2 + 3α − 1 (A.4b)

c3 = 4α2 − 4α + 1 (A.4c)

c4 = 1

3
(8α3 − 14α2 + 7α − 1) (A.4d)

d1 = 0 (A.4e)

d2 = −32α5 − 112α4 + 160α3 − 88α2 + 14α + 1

12α2 − 28α + 23
(A.4f )

d3 = −96α6 − 432α5 + 768α4 − 616α3 + 126α2 + 69α − 25

2(12α2 − 28α + 23)
(A.4g)
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d4 = −−96α6 + 336α5 − 464α4 + 216α3 + 66α2 − 83α + 18

12α2 − 28α + 23
(A.4h)

d5 = −1

4
(−192α7 + 768α6 − 1168α5 + 560α4 + 428α3 − 616α2 + 257α − 37) ·

(12α2 − 28α + 23)−1. (A.4i)

It is then straightforward—using computer algebra—to show that

d

dt
L [u1(t), w1(t)] = − (1 − α)(1 − 2α)3(u1(t)

2 + w1(t)
2)2

12α2 − 28α + 23
+ g5(u1, w1)

< 0, (A.5)

since 12α2 − 28α + 23 > 0 for all (real) α. Here g5(u1, w1) stands for a function bounded by
a homogeneous polynomial of fifth order in u1 and w1. Since L(u1, w1) is positive definite
for small enough u1 and w1, it follows from (A.5) that the origin of (A.2) is stable.

Appendix B. Lyapunov function for (10)

In this appendix we prove the formula (40).
Differentiation of the second ODE of the system (38) yields

s̈ = β(u̇s + uṡ), (B.1)

and via the first ODE of the system (38) this yields

s̈ = β(−f s − αu2s + γ s−1 + uṡ), (B.2)

and using again the second ODE of the system (38) to eliminate u and multiplying by s one
gets

ss̈ = β(−f s2 + γ ) − α

β
(ṡ + δ)2 + ṡ(ṡ + δ). (B.3)

By differentiating this ODE (and then dividing by s) we then get

˙̇ṡ = −2βf ṡ +
β − 2α

β

(ṡ + δ)

s
s̈. (B.4)

On the other hand, on time-differentiating L, see (39), we get

L̇ = ( ˙̇ṡ + 2βf s̈)s̈, (B.5)

and via (B.4) this becomes

L̇ = (β − 2α)
(ṡ + δ)

βs
(s̈)2, (B.6)

hence, via the second ODE of the system (38), precisely (40), which is thereby proven.
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